# Locomotive Emissions & Efficiency Technology Roadmaps

M. E. Moncelle

New Technology Introduction Manager

Locomotive Emissions and Systems Efficiency Workshop 31-Jan-01



# Key Technologies







# Owning & Operating Trends

# **ENVIRONMENTAL IMPACT**



**OWNING & OPERATING COSTS** 

(Cost per Productivity Unit)



# NO<sub>x</sub> Formation - Diesel





#### Diesel Combustion







# Combustion Modeling Program

- Advanced Analysis:
  - Performance Analysis
  - Combustion Simulation
- Advanced Design:
  - Genetic Algorithms
  - Design Optimization
- Partnerships
  - U. of Wisconsin
  - -

Temperature Distribution







# Gas Engine Combustion







#### Gas Engine Application to Locomotives

- Advantages
  - Low Emissions
    - <1.0 gm NO<sub>x</sub>
    - Low Particulates
- Increased Efficiency
  - Linkage w/ ARES Program
  - Target 50% Thermal Efficiency





# "Inside The Engine" Technology



M43 Cylinder Liner





# Compression Ratio Effect

With Miller Cycle







#### Diesel HCCI

Homogeneous Charge Compression Ignition







# HCCI - Two Stage Injection





#### Diesel HCCI Technology Need

- Single Injector
  - Variable Orifice Spray Pattern
    - Size / Direction
    - On / Off
    - Current Package Size
- Needed For Retro-Fit





# Technology / Variability Gap





# EGR Sensor Accuracy

Impact On Emissions







# Technology / Variability Gap







# After-Treatment Technology

| <u>Technology</u>  | <b>Emissions Reductions</b> | <u>Hurdles</u>                                                   |
|--------------------|-----------------------------|------------------------------------------------------------------|
| Oxidation Catalyst | Particulates 10-30%         | Low Sulfur Fuel, +Cost                                           |
| Particulate Trap   | Particulates 90+%           | Large Size (2x), +++Cost                                         |
| SCR                | NOx 70-90%                  | Ammonia or Urea, +++Cost                                         |
| NOx Trap           | NOx 40-60%                  | EPA Perception 90+%<br>Regen Fuel 5-10% bsfc<br>Zero Sulfur Fuel |
| Lean NOx Catalyst  | NOx 20-30%                  | Large Size (2x)<br>3-8% bsfc<br>+++Cost                          |
| Plasma System      | Part / NOx? 70-90%          | Undeveloped                                                      |



# SCR System







#### Ultra Fast NO<sub>x</sub> Sensor - Benefits

- Closed Loop Control
- Engine Performance Diagnostics
- Minimum Engine-to-Engine Variation
- Minimum Cylinder-to-Cylinder Variation
- Transient Control
- Reduced Fuel Consumption





#### Ultra Fast NO<sub>x</sub> Sensor - Spec's

- Accuracy
  - < 4% of Full Range</p>
  - < 5% Drift Over Life Time
- Response
  - 8 10 milliseconds
  - < 100 milliseconds for SCR</p>
- Temperature Range
  - **-** -40 to 700° C
- Life
  - $B_{10} > 5,000$  Hours Light Duty On-Highway
  - B<sub>10</sub> > 40,000 Hours Heavy Duty On-Highway
  - $B_{10}$  > 80,000 Hours Off-Highway





#### Particulate Sensor - Closed Loop Control

- ► Accuracy = < 300 Parts per Billion
- ► Resolution = < 75 Parts per Billion
- Response
  - 8 10 milliseconds
- Temperature Range
  - **-** -40 to 700° C
- Life
  - $B_{10} > 5,000$  Hours Light Duty On-Highway
  - $B_{10}$  > 40,000 Hours Heavy Duty On-Highway
  - $B_{10}$  > 80,000 Hours Off-Highway





## Summary of Program Needs

- Combustion Modeling & Optimization
- Variable Orifice Nozzle for Diesel Injection
- Gas Engine Application to Locomotive
- ► NO<sub>x</sub> Sensor Development
- Package Optimized After-Treatment





# Changing Technology





